New embeddings between the Higman-Thompson groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The homology of the Higman–Thompson groups

We prove that Thompson’s group V is acyclic, answering a 1992 question of Brown in the positive. More generally, we identify the homology of the Higman–Thompson groups Vn,r with the homology of the zeroth component of the infinite loop space of the mod n− 1 Moore spectrum. As V = V2,1, we can deduce that this group is acyclic. Our proof involves establishing homological stability with respect t...

متن کامل

Finite Factor Representations of Higman-Thompson groups

We prove that the only finite factor-representations of the HigmanThompson groups {Fn,r}, {Gn,r} are the regular representations and scalar representations arising from group abelianizations. As a corollary, we obtain that any measure-preserving ergodic action of a simple Higman-Thompson group must be essentially free. Finite factor representations of other classes of groups are also discussed.

متن کامل

Factorizations of the Thompson-higman Groups, and Circuit Complexity

We consider the subgroup lpGk,1 of length preserving elements of the Thompson-Higman group Gk,1 and we show that all elements of Gk,1 have a unique lpGk,1 · Fk,1 factorization. This applies to the Thompson-Higman group Tk,1 as well. We show that lpGk,1 is a “diagonal” direct limit of finite symmetric groups, and that lpTk,1 is a k ∞ Prüfer group. We find an infinite generating set of lpGk,1 whi...

متن کامل

Coherent Presentations of Structure Monoids and the Higman-thompson Groups

Structure monoids and groups are algebraic invariants of equational varieties. We show how to construct presentations of these objects from coherent categorifications of equational varieties, generalising several results of Dehornoy. We subsequently realise the higher Thompson groups Fn,1 and the Higman-Thompson groups Gn,1 as structure groups. We go on to obtain presentations of these groups v...

متن کامل

The Conjugacy Problem for Groups, and Higman Embeddings

For every finitely generated recursively presented group G we construct a finitely presented group H containing G such that G is (Frattini) embedded into H and the group H has solvable conjugacy problem if and only if G has solvable conjugacy problem. Moreover, G and H have the same r.e. Turing degrees of the conjugacy problem. This solves a problem by D.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2020

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2020.1739290